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On the Construction of Optimal Paths to

Extinction ∗
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Abstract

One of the major problems in dealing with interacting finite populations of agents, such as
molecules in chemistry or people in populations, is that there always exists a probability
of one species or state going extinct. Predicting the probability of extinction requires a
knowledge of how the dynamics progresses towards extinction.The path that optimizes the
probability to extinction is defined to be the optimal path. Here we present an algorithm for
constructing, or growing, the optimal path to extinction in systems of arbitrary dimensions.
The algorithm relies on the calculation of finite-time Lyapunov exponents (FTLE), which
provide a quantitative measure of how sensitively a system’s behavior depends on initial
conditions [1]. We also present an efficient method for approximating the FTLE field of a
dynamical system.
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1 Introduction

Undoubtedly, the key to understanding effective strategies for expediting the extinction
of an epidemic lies in developing an accurate model of disease evolution within a popula-
tion. Traditionally, the spread of an epidemic within a population has been modeled as a
stochastic system, where noise arises from discrete interactions between individuals.

We will instead employ an eikonal approximation to recast the problem in terms of an
effective classical Hamiltonian system [1]. It turns out that there exists a specific sequence
of noise that transitions the system from an endemic to extinct state, representing the most
probable, rare sequence of such events. This heteroclinic trajectory in the phase space of
the Hamiltonian flow is known as the optimal path to extinction (OPE).

Analysis of optimal paths to extinction has the potential to reveal new strategies for
controlling the spread of disease and monitoring the progress of existing protocols [1].

This report presents an algorithm for growing the optimal path to extinction in systems
of arbitrary dimensions. The algorithm relies on the calculation of finite-time Lyapunov
exponents (FTLE), which provide a quantitative measure of how sensitively a system’s
behavior depends on initial conditions [1]. We will also present an efficient method for
approximating the FTLE field of a dynamical system.

The algorithm presented has successfully grown optimal paths to extinction for a num-
ber of two dimensional systems, and shows promise for working with four dimensional
systems as well. However, additional experiments are required before accuracy in higher
dimensional systems can be confirmed.

2 Finite-Time Lyapunov Exponent Approximation

Continuous dynamical systems have quantities, known as Lyapunov exponents, which pro-
vide a quantitative measure of how sensitively a system’s behavior depends on small per-
turbations to initial conditions. Traditionally, Lyapunov exponents measure sensitivity in
the infinite time limit; finite time Lyapunov exponents are simply Lyapunov exponents
evaluated on a finite time interval [4].

A detailed exploration of FTLE calculations can be found in [1] and [4]. Below, we
present a method for approximating FTLE quickly and efficiently, referred to as the “Poor
Man’s FTLE”.

2.1 Poor Man’s FTLE Algorithm

Assume x and p are state variables, representing a point in a Hamiltonian system’s phase
space.

1. Evaluate equations of motion starting at (x, p) for time T with integration time step
∆t, and record the final position as (x′, p′).
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2. Pick a random point at distance ε away from (x, p), called (xε, pε), where ε is very
small relative to the dynamics of the system.

3. Evaluate equations of motion starting at (xε, pε) for time T with integration time
step ∆t, and record the final position as (x′ε, p

′
ε).

4. Let δ represent the Euclidean distance between the two end points of the trajectories,
i.e. δ = dist [(x′, p′), (x′ε, p

′
ε)].

5. Calculate the FTLE at (x, p) as

σ =
1

|T |
ln
δ

ε
.

A graphical representation of this algorithm is shown in Figure 1.

Figure 1: Graphical representation of Poor Man’s FTLE algorithm. The red and green
dotted lines represent the trajectories of points (x, p) and (xε, pε) through phase space over
time period T .

3 Growing Optimal Path to Extinction - The Algorithm

Schwartz, et. al. have shown that the local maximums of FTLE fields correspond to the
optimal path to extinction, i.e. the optimal path to extinction is the most sensitive to initial
data. In fact, finding ridges of local maxima through phase space will lead us towards the
optimal path to extinction, if one exists [4].
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Previous work has focused on evaluating fields of FTLE values, and then picking out
the optimal paths to extinction based on local maxima [1]. However, this process is a
time consuming and inefficient method to detect an optimal path to extinction, because
it requires evaluating FTLE’s over regions of phase space that are unrelated to the OPE.
Additionally, these FTLE fields are difficult to visualize in higher dimensions [5].

Instead, we present an algorithm to grow the optimal path to extinction in arbitrary n
dimensions, knowing only the endemic and extinct states.

3.1 Review of Terminology and Notation

For the purposes of this explanation, we will use x to represent an n-dimensional vector,
which defines a point in n = d+ 1 dimensional state space. Equivalently, we can represent
a point in d + 1 dimensional state space using hyperspherical coordinates, where α is a
vector of d angles, along with a radius r. We will define functions ΦC(α) and ΦP (x) to
represent conversions from polar to cartesian and cartesian to polar, respectively1. For a
review of hyperspherical coordinates, see Appendix A.

Let P be a list of equally sized surface partitions of a d-sphere, defined by intervals
of hyperspherical angles2. They can be thought of as bins for points on the surface of a
d-sphere. Each p ∈ P defines an equally sized d-volume. Let ν be the length of P (i.e. the
number of partitions).

3.2 Growing Algorithm

The OPE growing algorithm combines the fact that the path must be curve along with the
knowledge that the local maximum of the FTLE falls along the path to grow it from the
endemic state. The algorithm itself is presented below.

Initialize variables . . .

1. Set the iterator κ = 0.

2. Choose a starting point for the algorithm, x0 (the endemic state).

3. Choose an ending point for the algorithm, xf (the extinct state).

4. Choose search shell radial limits, R. Rmax =
|xf−x0|

100 is usually sufficient.

Begin procedure . . .

5. Calculate the direction of the vector field at point xκ, û.

1For simplicity, these functions are assumed to operate only on points where |x| = 1.
2Recall that a d-sphere exists in d+1 dimensional space.
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6. Generate S uniformly distributed points on a d-hemisphere, where the inward normal
to the hemisphere is û .

7. Randomly choose S radii for the test points, normally distributed between Rmin and
Rmax.

8. Remove any test points that fall within a d-sphere of radius Rmax from xκ−1.

9. For each3 remaining test point, b, calculate and store the FTLE at b as σ|b using the
Poor Man’s FTLE approximation.

10. Sort the test points by their FTLE values, and extract the z test points with the
largest FTLE.

11. Sort the top z points into ν bins based on spherical angles from xκ.

12. Find the average angles αmax associated with the bin with most members.

13. Calculate xκ+1 = Rmax · ΦC(αmax) + xκ

14. If |xκ+1 − xf | > Rmax:

• set κ = κ+ 1

• return to step 6

A graphical depiction of this process is presented in Fig 2, for the case n = 2.

3This loop can be run in parallel.

5



Figure 2: Sample progress of the optimal path growing algorithm in two dimensional state
space. Regions of valid test points are shaded in light green for each step of the algorithm.
At each step, the hemisphere of valid points has an inward normal aligned with the vector
field at that point. The dotted line represents the grown path along the curve, while the
solid black line represents the analytical solution.
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4 Results

We now present the results of attempting to grow an optimal path to extinction using
the algorithm described above on several examples, along with analytical solutions, if
applicable.

4.1 Example 1 - Extinction in a Branching-Annihilation Process

A simple system with intrinsic noise fluctuations is extinction in the stochastic branching-
annihilation process

A
λ−→ 2A and 2A

µ−→ 0,

where λ and µ > 0 are constant reaction rates [1]. Hamilton’s equations are given as

q̇ = q [λ(1 + 2p)− µ(1 + p)q]

ṗ = p [µ(2 + p)q − λ(1 + p)]
(1)

where q is transformation on the number of entities, and p is the effective force of the noise.
It is simple to find the fixed points of the system analytically as (λ/µ, 0), (0, 0) and

(0,−1). We can find an analytical solution for the optimal path to extinction, given as

q =
2λ(1 + p)

µ(2 + p)
.

As a check of our methods, the analytical solution for the optimal path to extinction
is plotted against the field of approximate FTLE values in Figure 3. We can see that the
analytical solution corresponds nicely to the ridge of local maximum FTLE.

We can grow this optimal path without knowing the analytical solution. Starting at
the endemic state x0 = (λ/µ, 0), we reach the extinct state xf = (0,−1) by following the
algorithm above. The successfully grown curve is shown in Figure 3.
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Figure 3: Graphical representation of running forward and backwards (averaged) “Poor
Man’s FTLE” algorithm on (1). Analytical solution is plotted in dotted black. Axis are
thickened for convenience.
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4.2 Example 2 - SIS Epidemic Model with External Fluctuations

A classical Susceptilbe-Infectious-Susceptible (SIS) epidemiological model is represented
by the following system of equations:

Ṡ = µ− µS + γI − βIS
İ = −(µ+ γ)I + βIS

where µ represents a constant birth/death rate, β represents the contact rate, and γ
represents the rate of recovery. If we normalize so that S + I = 1, we can rewrite this as a
one-dimensional problem:

İ = −(µ+ γ)I + βI(1− I).

We can then include external fluctuations due to random migrations to/from other popu-
lations:

İ = F(I) + η(t)

F(I) = −(µ+ γ)I + βI(1− I)

where η(t) is uncorrelated Gaussian noise with zero mean. Evaluating the Euler-Lagrange
equation produces the desired system

İ = p

ṗ =
(
βI(1− I)− κI

)(
β(1− 2I)− κ

)
.

where κ = µ+ γ [1].
The FTLE field, along with the successfully grown curve, is shown in Figure 4.

4.3 Example 3 - SIS Epidemic Model with Internal Fluctuations

We can also look at the version of the SIS epidemic model where the form of the noise is
not known beforehand. In this case, Hamilton’s equations become

İ = −(µ+ γ)I e−p + βI(1− I)ep

ṗ = −(µ+ γ)(e−p − 1) + β(ep − 1)(2I − 1).

No analytical solution for the optimal path to extinction exists for this system, but
we can use our FTLE growing method. Results obtained from running the “Poor Man’s
FTLE” on this system, along with the grown path, are presented in Fig. 5.
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4.4 Example 4 - SIS Epidemic Model without an Adiabatic Assumption

The preceding examples illustrate the effectiveness of this method in growing an optimal
path to extinction for systems of two dimensions. We would now like to use this algorithm
to find an OPE for a four dimensional case. We will use the SIS model with internal noise,
but we will not make the adiabatic assumption that S+I = 1 in order to remove a variable.

We begin with the Hamiltonian

H(x,p) = µ(ep1−1)+µx1(e
−p1−1)+µx2(e

−p2−1)+κx2(e
p1−p2−1)+βx1x2(e

p2−p1−1).

Hamilton’s equations become

ẋ1 =
∂H

∂p1
= µep1 − µx1e−p1 + κx2e

p1−p2 − βx1x2ep2−p1

ṗ1 = −∂H
∂x1

= −µ
(
e−p1 − 1

)
− βx2

(
ep2−p1 − 1

)

ẋ2 =
∂H

∂p2
= −µx2e−p2 − κx2ep1−p2 + βx1x2e

p1−p2

ṗ2 = −∂H
∂x2

= −µ
(
e−p2 − 1

)
− κ

(
ep1−p2 − 1

)
− βx1

(
ep2−p1 − 1

)
and the critical points of the system are

z =


x1
p1
x2
p2

 zendemic =


1/R0

0
(1−R0)/R0

0

 zextinct =


1
0
0
0


where R0 = β/(µ+ κ).

A simpler form of these equations can be derived if we use a Taylor series expansion
approximation (ex = x − 1) to remove the exponentials from the Hamiltonian. We arrive
at:

H(x,p) = µp1

(
1 +

p1
2

)
− µx1p1

(
1− p1

2

)
− µx2p2

(
1− p2

2

)
+ κx2 (p1 − p2)

(
1 +

p1 − p2
2

)
+ βx1x2 (p2 − p1)

(
1 +

p2 − p1
2

)
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with differentials of

ẋ1 = µ (1 + p1)− µx1 (1− p1) + κx2 (p1 − p2 + 1)− βx1x2 (p2 − p1 + 1)

ṗ1 = µp1

(
1− p1

2

)
− βx2 (p2 − p1)

(
1 +

p2 − p1
2

)

ẋ2 = µx2 (p2 − 1)− κx2 (p1 − p2 + 1) + βx1x2 (p2 − p1 + 1)

ṗ2 = µp2

(
1− p2

2

)
− κ (p1 − p2)

(
1 +

p1 − p2
2

)
− βx1 (p2 − p1)

(
1 +

p2 − p1
2

)
and a new endemic critical point

z′extinct =


1
0
0

−2R0−1
R0+1

 .

The extinct state is the same as in the full system.
Attempts at running the optimal path growing algorithm on the above systems did not

terminate, although the Euclidean distance to the end point decreased steadily over time.
A bug in the algorithm code may exist, preventing it from working in a higher dimensional
case. Additional review of the algorithm, as well as more control cases are recommended
to determine the validity of this algorithm in higher dimensions.
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A Hyperspherical Coordinates

A point on a d-sphere,which is embedded in (d + 1)-space, can be defined either by d + 1
Cartesian coordinates x = [x1 x2 . . . xd+1] or a distance from the origin, R, along with
d polar coordinates: α = [α1 α2 . . . αd], where the longitude, α1 ∈ [0, 2π), and all other
colatitudes, αi|i>1 ∈ [0, π).

We will define functions ΦC(α) and ΦP (x) to represent conversions from polar to
cartesian and cartesian to polar, respectively.

The polar coordinates α are defined such that

x1 = R cosα1

d∏
j=2

sinαj

x2 = R

d∏
j=1

sinαj

xk = R cosαk−1

d∏
j=k

sinαj , k ∈ {3, . . . , d+ 1}.

To go the other direction (cartesian to polar), use the equations:

α1 = tan−1
(
x2
x1

)
αk = cos−1

(
xk+1∏d

j=k+1 sinαj

)
, k ∈ {2, ..., d}.

Note that since the equation for αk is dependent on αk+1, it is most convenient to solve for
α backwards; i.e. αd, αd−1, . . . , α1. Also, since α1 ranges from 0 to 2π, a correction must
be made to account for the quadrant it is in. It can be corrected by

α1 = tan−1
(a
b

)
, α′1 =


(b > 0 & a > 0) α1

(b > 0 & a < 0) α1 + 2π
(b < 0) α1 + π

where α′ is the corrected angle. The radius, R, is analogous to the three dimensional
instance

R =
√

(x · x) =
√
x21 + x22 + . . .+ x2d + x2d+1.
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B Generating uniformly distributed hyperhemispheres

To find a random point xr in the desired region, create a vector x of length n, where
each entry is a random value between zero and one. Normalize x, and multiply by the
desired radius [3]. Repeat as necessary to generate more points. This can be implemented
in MATLAB easily:

S = 1000; %the number of points on the sphere surface we want
d = 2; % we want points on a d−sphere (in d+1 dimensions)
C = randn(d+1,S); %get random Cartesian points

for ii = 1:S

tempR = sqrt(dot(C(:,ii),C(:,ii))); %normalize each point
C(:,ii) = C(:,ii)./tempR;

end

To restrict this to a hyper-hemisphere, we need only limit 0 ≤ x1 ≤ 1. If we wish
to rotate this hyper-hemisphere about a particular direction, we can just use the func-
tion rotSphere(C, a) defined below. The argument a represents the polar angles of the
hemisphere normal vector, û.

function [Cp R] = rotSphere(C,a)
%ROTSPHERE Rotate hypersphere with points "C" about angles defined in "a"

Cp = zeros(size(C));
d = length(a);
R = eye(d+1);

for jj = 1:d %create the composite rotation matrix
R = R*makeRotMat(a(jj),jj,d);

end

for ii = 1:size(C,2) %for each point, rotate
Cp(:,ii) = R*C(:,ii);

end

function R = makeRotMat(ang,this dim,total d)
%make a single rotation matrix

R = eye(total d+1);

Rsub = [cos(ang) −sin(ang);
sin(ang) cos(ang)];

R(this dim:this dim+1,this dim:this dim+1) = Rsub;

15



C Hypersphere Partitioning and Binning

The optimal path growing algorithm is assumes a method exists for partitioning the surface
of a d-sphere and sorted points on the surface into such partitions [2]. In the case d = 1
this is trivial; one can simply divide the polar coordinate θ of a circle into linearly spaced
partitions. For instance, doing theta = linspace(0,2*pi,nBins) in MATLAB would
results in a list of boundaries of a circumference partitioned into nBins sections.

Unfortunately, this is not so simple in cases where d > 1. An attempt to use this
method in the case d = 2 is shown in Fig. 6. The two polar coordinates θ and φ are
linearly spaced, however the surface elements resulting from these spacing are clearly of
unequal size.
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Figure 6: An example 2-sphere (in 3-dimensions) with linearly spaced polar angles. Linearly
spaced polar angles lead to inconsistent surface area sizes when d > 1.

Instead, we need a method for partitioning the surface of a d-sphere into equally sized
d-volume elements. Fortunately, a MATLAB package has been developed for this very
purpose. Once the package is installed, simply use the command
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regions = eq regions polar(d,nBins); %polar coordinate intervals
r centers = eq region centers(d,nBins); %polar coordinate centers

to produce a matrix which represents nBins equally sized partitions of a d-sphere. A
2-sphere generated with this package is presented in Fig. 7.

(a) (b)

Figure 7: (a) An example 2-sphere with 10 equally sized surface partitions. (b) A stere-
ographic projection of a 3-sphere divided into 10 equally sized surface partitions. Gener-
ated by the Recursive Zonal Equal Area Sphere Partitioning Toolbox with the command
project s3 partition(10) [2].

Once the partition polar coordinate intervals are known, sorted points on the surface
of a d-sphere into bins is a trivial task. For example, to bin points on the surface of a
3-sphere, simply iterate through each partition until a points polar angles are within the
of a partition’s three intervals.
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